HF RADIO

An Overview

High frequency (HF) is the ITU, International Telecommunication Union designation for the range of radio frequency electromagnetic waves (radio waves) between 3 and 30 megahertz (MHz).

IAW FCC Band Plan HF starts @ 1.8 Mhz. (97.313) High Frequency (HF) radio is used for first-line and backup communications over long distances, mainly in remote regions of the developed world and in developing countries.

HF is used by many government agencies and the Military

The dominant means of long distance communication in HF band's is skywave ("skip") propagation, in which radio waves directed at an angle into the sky refract back to Earth from layers of ionized atoms in the ionosphere. By this method HF radio waves can travel beyond the horizon, around the curve of the Earth, and can be received at intercontinental distances. However, suitability of this portion of the spectrum for such communication varies greatly with a complex combination of factors:

This is called Radio Propagation: Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere. IONOSPHERE

Sunlight/darkness (Grayline)at site of transmission and reception Transmitter/receiver proximity to solar terminator (Grayline) Season , Sunspot cycle, Solar activity, Polar aurora

Courtesy of ON6ZQ

Solar-Terrestrial Data - http://www.n0nbh.com											
12 Jun 2018 1240 GMT	TI VHF Conditions		HF Conditions			Condition		K-In A-In			
SET 69 SN O	Iten	Status	Band	Day	Night	Quiet		0-2	0-7		
A 4 K 0 / Tromso	Aurora	Band Closed	80n-40n	Good	Good	Unsett	led	3	8-15		
	6n EsEU	50MHz ES	30n-20n	Poor	Poor	Active		4	16-29		
	4n EsEU	Band Closed	17n-15n	Poor	Poor	Minor	storm	5	30-49		
304H 35.6 @ SEM	2n EsEU	Band Closed	12n-10n	Poor	Poor	Major	storm	6	50-99		
Pth FIX 0.19	2n EsNA	Band Closed	Geonag F	ield I	NACTIVE	Severe	storm	7-9	>100		
Elc F1x 388.00	EME Deg	Good	Sig Nois	e Lvl	S0-S1	SFI A-	In K-I	n Pro	p Opng		
Aurora 1/n=1,99	MUF	1111	MUF NO T	ronso	14.26	>180 <	8 <3	E-	W open		
Aur Lat <mark>67.5</mark> °	HS .		Solar Fl	are Pr	b 11%	>180 <	8 >3	N-X	S open		
Bz -0,4 SW 306,5	MIN -	6 12 18 OIC MAX	(C) Paul	L Hennma	an 2013	1>250 >	30 >3	Au	rora		

Solar-Terrestrial Data	
12 Jun 2018 1254 GMT	
SFI 69 SN 0	
304A 95.6@SEM	
A-Ind 4	
K-Ind O	
X-Ray A2.7	
Ptn Flx 0.19	
Elc F1x 388.00	
Aur Act 1/n= 1.99	
Aur Lat 67.5°	
Solar Wind 306.5	
Mag (Bz) -0.4	
S Noise SO-S1	
Geomag INACTIVE	
http://www.nOnbh.com	

Solar Flux Index (SFI)

A measure known as the solar flux is used as the basic indicator of solar activity, and to determine the level or radiation being received from the Sun. This gives a very good indication of conditions for long-distance communication.

The figure for the solar flux can vary from as low as 50 or so to as high as 300.

Low values indicate that the maximum useable frequency will be low and overall conditions will not be very good, particularly on the higher HF bands.

A and K indices

These two indices are used to determine the level of geomagnetic activity. These give indications of the severity of the magnetic fluctuations and hence the disturbance to the ionosphere. The lower the numbers the less geomagnetic disturbance the better the propagation.

Sunspot Number Progression

HF ANTENNAS

Multiband Vertical

Multiband Beam

Use an antenna tuner to help correct high SWR problems

Dipole Length Calculation

Dipole antenna length A wave length is 984 feet A ½ wave length is 492 feet A ¼ wave length is 246 feet

To figure a dipole length for a specific frequency or band, divide the wave length, in feet, by the frequency of band or a specific frequency.

For a Band 492 divided by 7.000= 70.28 feet long dipole

For a Frequency 492 divided by 7.245 = 67.9 feet long dipole

Antenna Gain

The ability of an antenna to transmit and receive efficiently. Antenna are magnetically polarized.

- Vertical antennas are polarized vertically
- Beam antennas are polarized horizontally

Effective radiated power is the term that describes station output, including the transmitter, antenna and everything in between, when considering transmitter power and system gains and losses.

HF RADIOS

Yaesu FTDX3000 100 watts 160 through 6 Meters - SSB/CW/FM/AM/Digital

ICOM IC-7300 160 thru 6 meters – SSB/CW/FM/AM/Digital

TS 2000 Kenwood160,80,40,30,20,17,15,12,10,6,Sub : 2 meter band, 70 cm band

HF Operation Equipment Antenna Tuner

Keep the antenna and rig matched to reduce high SWR. Most newer radios have built in tuners. These will handle SWR up 3:1. Beyond that an automatic or manual tuner is the best way to deal with high SWR.

The real cure is to check all connections/connectors for 50 ohms impedance and use a common mode choke.

A good SWR/Watt meter will indicate how mismatched your antenna and radio is. Some SWR Watt meters have a built in dummy load for tuning purposes. This is especially true if you are going to use a linear amplifier. To work Digital modes the following items of equipment are necessary: Computer

A windows machine is best as some of the digital modes will not run on MAC OS

DIGITAL HF PROGRAMS

- Digipan, Fldigi, are PSK31
- PSK31 is a highly-efficient data mode that lets you work long distances, even when you can barely hear the signal. PSK31 stands for Phase Shift Keying 31 baud (or 31 bits per second/bps). Unlike RTTY (radio teletype) the characters are formed by changing the phase of the sound wave, not by using different tones as in RTTY (Radio Teletype) JT65,JT9,FT8: Weak signal digital communication by amateur radio.
- HF radio Sound card interface

Digital HF RADIO

Connect your computer to your radio using a sound card interface.

Tigertronics SignaLink Radio Specific

 \times

West Mountain Radio

- Makes a number of digital mode interface devices.
- Variable prices

